免费中文字幕日产乱码-免费做爰试看120秒-免免费国产AAAAA片-妺妺窝人体色777777野大粗-网站国产-网友自拍一区

專注高端智能裝備一體化服務
認證證書

新聞資訊

【兆恒機械】碳化硅元器件的昨天、今天、明天!

  • 點擊量:
  • |
  • 添加日期:2021年07月13日

碳化硅元器件的昨天、今天、明天!

來源:寬禁帶半導體技術創新聯盟


【導讀】碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑為原料通過電阻爐高溫冶煉而成。碳化硅在大自然也存在罕見的礦物,莫桑石。 碳化硅又稱碳硅石。在當代C、N、B等非氧化物高技術耐火原料中,碳化硅為應用最廣泛、最經濟的一種。可以稱為金鋼砂或耐火砂。



一、碳化硅的前世今生



碳化硅由于化學性能穩定、導熱系數高、熱膨脹系數小、耐磨性能好,除作磨料用外,還有很多其他用途,例如:以特殊工藝把碳化硅粉末涂布于水輪機葉輪或汽缸體的內壁,可提高其耐磨性而延長使用壽命1~2倍;用以制成的高級耐火材料,耐熱震、體積小、重量輕而強度高,節能效果好。低品級碳化硅(含SiC約85%)是極好的脫氧劑,用它可加快煉鋼速度,并便于控制化學成分,提高鋼的質量。此外,碳化硅還大量用于制作電熱元件硅碳棒。

碳化硅的硬度很大,莫氏硬度為9.5級,僅次于世界上最硬的金剛石(10級),具有優良的導熱性能,是一種半導體,高溫時能抗氧化。

碳化硅歷程表

  1905年 第一次在隕石中發現碳化硅

  1907年 第一只碳化硅晶體發光二極管誕生

  1955年 理論和技術上重大突破,LELY提出生長高品質碳化概念,從此將SiC作為重要的電子材料

  1958年 在波士頓召開第一次世界碳化硅會議進行學術交流

  1978年 六、七十年代碳化硅主要由前蘇聯進行研究。到1978年首次采用“LELY改進技術”的晶粒提純生長方法

  1987年~至今以CREE的研究成果建立碳化硅生產線,供應商開始提供商品化的碳化硅基。

2001年德國Infineon公司推出SiC二極管產品,美國Cree和意法半導體等廠商也緊隨其后推出了SiC二極管產品。在日本,羅姆、新日本無線及瑞薩電子等投產了SiC二極管。

2013年9月29日,碳化硅半導體國際學會“ICSCRM 2013”召開,24個國家的半導體企業、科研院校等136家單位與會,人數達到794人次,為歷年來之最。國際知名的半導體器件廠商,如科銳、三菱、羅姆、英飛凌、飛兆等在會議上均展示出了最新量產化的碳化硅器件。

到現在已經有很多廠商生產碳化硅器件比如Cree公司、Microsemi公司、Infineon公司、Rohm公司。


二、碳化硅器件的優勢特性



碳化硅(SiC)是目前發展最成熟的寬禁帶半導體材料,世界各國對SiC的研究非常重視,紛紛投入大量的人力物力積極發展,美國、歐洲、日本等不僅從國家層面上制定了相應的研究規劃,而且一些國際電子業巨頭也都投入巨資發展碳化硅半導體器件。

與普通硅相比,采用碳化硅的元器件有如下特性:

image.png

  高壓特性

  碳化硅器件是同等硅器件耐壓的10倍

  碳化硅肖特基管耐壓可達2400V。

  碳化硅場效應管耐壓可達數萬伏,且通態電阻并不很大。

image.png

  高頻特性

image.png

  高溫特性

      在Si材料已經接近理論性能極限的今天,SiC功率器件因其高耐壓、低損耗、高效率等特性,一直被視為“理想器件”而備受期待。然而,相對于以往的Si材質器件,SiC功率器件在性能與成本間的平衡以及其對高工藝的需求,將成為SiC功率器件能否真正普及的關鍵。

      目前,低功耗的碳化硅器件已經從實驗室進入了實用器件生產階段。目前碳化硅圓片的價格還較高,其缺陷也多。通過不斷的研究開發,預計到2010年前后,碳化硅器件將主宰功率器件的市場。但實際上并非如此。



三、最受關注的碳化硅MOS




SiC器件分類

image.png

SiC-MOSFET

  SiC-MOSFET 是碳化硅電力電子器件研究中最受關注的器件。成果比較突出的就是美國的Cree公司和日本的ROHM公司。

  在Si材料已經接近理論性能極限的今天,SiC功率器件因其高耐壓、低損耗、高效率等特性,一直被視為“理想器件”而備受期待。然而,相對于以往的Si材質器件,SiC功率器件在性能與成本間的平衡以及其對高工藝的需求,將成為SiC功率器件能否真正普及的關鍵。

碳化硅MOS的結構

碳化硅MOSFET(SiC MOSFET)N+源區和P井摻雜都是采用離子注入的方式,在1700℃溫度中進行退火激活。另一個關鍵的工藝是碳化硅MOS柵氧化物的形成。由于碳化硅材料中同時有Si和C兩種原子存在,需要非常特殊的柵介質生長方法。其溝槽星結構的優勢如下:

平面vs溝槽

image.png

SiC-MOSFET采用溝槽結構可最大限度地發揮SiC的特性。

image.png

碳化硅MOS的優勢

硅IGBT在一般情況下只能工作在20kHz以下的頻率。由于受到材料的限制,高壓高頻的硅器件無法實現。碳化硅MOSFET不僅適合于從600V到10kV的廣泛電壓范圍,同時具備單極型器件的卓越開關性能。相比于硅IGBT,碳化硅MOSFET在開關電路中不存在電流拖尾的情況具有更低的開關損耗和更高的工作頻率。

20kHz的碳化硅MOSFET模塊的損耗可以比3kHz的硅IGBT模塊低一半, 50A的碳化硅模塊就可以替換150A的硅模塊。顯示了碳化硅MOSFET在工作頻率和效率上的巨大優勢。

碳化硅MOSFET寄生體二極管具有極小的反向恢復時間trr和反向恢復電荷Qrr。如圖所示,同一額定電流900V的器件,碳化硅MOSFET 寄生二極管反向電荷只有同等電壓規格硅基MOSFET的5%。對于橋式電路來說(特別當LLC變換器工作在高于諧振頻率的時候),這個指標非常關鍵,它可以減小死區時間以及體二極管的反向恢復帶來的損耗和噪音,便于提高開關工作頻率。

image.png

碳化硅MOS管的應用

      碳化硅MOSFET模塊在光伏、風電、電動汽車及軌道交通等中高功率電力系統應用上具有巨大的優勢。碳化硅器件的高壓高頻和高效率的優勢,可以突破現有電動汽車電機設計上因器件性能而受到的限制,這是目前國內外電動汽車電機領域研發的重點。如電裝和豐田合作開發的混合電動汽車(HEV)、純電動汽車(EV)內功率控制單元(PCU),使用碳化硅MOSFET模塊,體積比減小到1/5。三菱開發的EV馬達驅動系統,使用SiC MOSFET模塊,功率驅動模塊集成到了電機內,實現了一體化和小型化目標。預計在2018年-2020年碳化硅MOSFET模塊將廣泛應用在國內外的電動汽車上。



四、碳化硅肖特二極管




碳化硅肖特基二極管

碳化硅肖特基二極管結構

      碳化硅肖特基二極管(SiC SBD)的器件采用了結勢壘肖特基二極管結構(JBS),可以有效降低反向漏電流,具備更好的耐高壓能力。

碳化硅肖特基二極管優勢

碳化硅肖特基二極管是一種單極型器件,因此相比于傳統的硅快恢復二極管(Si FRD),碳化硅肖特基二極管具有理想的反向恢復特性。在器件從正向導通向反向阻斷轉換時,幾乎沒有反向恢復電流(如圖1.2a),反向恢復時間小于20ns,甚至600V10A的碳化硅肖特基二極管的反向恢復時間在10ns以內。因此碳化硅肖特基二極管可以工作在更高的頻率,在相同頻率下具有更高的效率。另一個重要的特點是碳化硅肖特基二極管具有正的溫度系數,隨著溫度的上升電阻也逐漸上升,這與硅FRD正好相反。這使得碳化硅肖特基二極管非常適合并聯實用,增加了系統的安全性和可靠性。

概括碳化硅肖特基二極管的主要優勢,有如下特點:

1. 幾乎無開關損耗

2. 更高的開關頻率

3. 更高的效率

4. 更高的工作溫度

5. 正的溫度系數,適合于并聯工作

6. 開關特性幾乎與溫度無關

碳化硅肖特基二極管的應用

      碳化硅肖特基二極管可廣泛應用于開關電源、功率因素校正(PFC)電路、不間斷電源(UPS)、光伏逆變器等中高功率領域,可顯著的減少電路的損耗,提高電路的工作頻率。在PFC電路中用碳化硅SBD取代原來的硅FRD,可使電路工作在300kHz以上,效率基本保持不變,而相比下使用硅FRD的電路在100kHz以上的效率急劇下降。隨著工作頻率的提高,電感等無源原件的體積相應下降,整個電路板的體積下降30%以上。



五、人們是如何評價碳化硅的?




幾乎凡能讀到的文章都是這樣介紹碳化硅:

  碳化硅的能帶間隔為硅的2.8倍(寬禁帶),達到3.09電子伏特。其絕緣擊穿場強為硅的5.3倍,高達3.2MV/cm.其導熱率是硅的3.3倍,為49w/cm.k。由碳化硅制成的肖特基二極管及MOS場效應晶體管,與相同耐壓的硅器件相比,其漂移電阻區的厚度薄了一個數量級。其雜質濃度可為硅的2個數量級。由此,碳化硅器件的單位面 積的阻抗僅為硅器件的100分之一。它的漂移電阻幾乎就等于器件的全部電阻。因而碳化硅器件的發熱量極低。這有助于減少傳導和開關損耗,工作頻率一般也要比硅器件高10倍以上。此外,碳化硅半導體還有的固有的強抗輻射能力。

  近年利用碳化硅材料制作的IGBT(絕緣柵雙極晶體管)等功率器件,已可采用少子注入等工藝,使其通態阻抗減為通常硅器件的十分之一。再加上碳化硅器件本身發熱量小,因而碳化硅器件的導熱性能極優。還有,碳化硅功率器件可在400℃的高溫下正常工作。其可利用體積微小的器件控制很大的電流。工作電壓也高得多。



六、目前碳化硅器件發展情況如何?




1,技術參數:舉例來說,肖特基二極管電壓由250伏提高到1000伏以上,芯片面積小了,但電流只有幾十安。工作溫度提高到180℃,離介紹能達600℃相差很遠。壓降更不盡人意,與硅材料沒有差別,高的正向壓降要達到2V。

2,市場價格:約為硅材料制造的5到6倍。



七、碳化硅(SiC)器件發展中的難題在哪里?




綜合各種報道,難題不在芯片的原理設計,特別是芯片結構設計解決好并不難。難在實現芯片結構的制作工藝。

  舉例如下:

  1,碳化硅晶片的微管缺陷密度。微管是一種肉眼都可以看得見的宏觀缺陷,在碳化硅晶體生長技術發展到能徹底消除微管缺陷之前,大功率電力電子器件就難以用碳化硅來制造。盡管優質晶片的微管密度已達到不超過15cm-2 的水平。但器件制造要求直徑超過100mm的碳化硅晶體,微管密度低于0.5cm-2 。

  2,外延工藝效率低。碳化硅的氣相同質外延一般要在1500℃以上的高溫下進行。由于有升華的問題,溫度不能太高,一般不能超過1800℃,因而生長速率較低。液相外延溫度較低、速率較高,但產量較低。

  3,摻雜工藝有特殊要求。如用擴散方法進行慘雜,碳化硅擴散溫度遠高于硅,此時掩蔽用的SiO2層已失去了掩蔽作用,而且碳化硅本身在這樣的高溫下也不穩定,因此不宜采用擴散法摻雜,而要用離子注入摻雜。如果p型離子注入的雜質使用鋁。由于鋁原子比碳原子大得多,注入對晶格的損傷和雜質處于未激活狀態的情況都比較嚴重,往往要在相當高的襯底溫度下進行,并在更高的溫度下退火。這樣就帶來了晶片表面碳化硅分解、硅原子升華的問題。目前,p型離子注入的問題還比較多,從雜質選擇到退火溫度的一系列工藝參數都還需要優化。

  4,歐姆接觸的制作。歐姆接觸是器件電極引出十分重要的一項工藝。在碳化硅晶片上制造金屬電極,要求接觸電阻低于10- 5Ωcm2,電極材料用Ni和Al可以達到,但在100℃ 以上時熱穩定性較差。采用Al/Ni/W/Au復合電極可以把熱穩定性提高到600℃、100h ,不過其接觸比電阻高達10- 3Ωcm2 。所以要形成好的碳化硅的歐姆接觸比較難。

  5,配套材料的耐溫。碳化硅芯片可在600℃溫度下工作,但與其配套的材料就不見得能耐此高溫。例如,電極材料、焊料、外殼、絕緣材料等都限制了工作溫度的提高。

  以上僅舉數例,不是全部。還有很多工藝問題還沒有理想的解決辦法,如碳化硅半導體表面挖槽工藝、終端鈍化工藝、柵氧層的界面態對碳化硅MOSFET器件的長期穩定性影響方面,行業中還有沒有達成一致的結論等,大大阻礙了碳化硅功率器件的快速發展。



八、為什么SIC器件還不能普及?




早在20世紀60年代,碳化硅器件的優點已經為人們所熟知。之所以目前尚未推廣普及,是因為存在著許多包括制造在內的許多技術問題。直到現在SIC材料的工業應用主要是作為磨料(金剛砂)使用。

SIC在能夠控制的壓力范圍內不會融化,而是在約2500℃的升華點上直接轉變為氣態。所以SIC 單晶的生長只能從氣相開始,這個過程比SIC的生長要復雜的多,SI在大約1400℃左右就會熔化。使SIC技術不能取得商業成功的主要障礙是缺少一種合適的用于工業化生產功率半導體器件的襯底材料。對SI的情況,單晶襯底經常指硅片(wafer),它是從事生產的前提和保證。一種生長大面積 SIC襯底的方法以在20世紀70年代末研制成功。但是用改進的稱為Lely方法生長的襯底被一種微管缺陷所困擾。

只要一根微管穿過高壓PN結就會破壞PN結阻斷電壓的能力,在過去三年中,這種缺陷密度已從每平方毫米幾萬根降到幾十根。除了這種改進外,當器件的最大尺寸被限制在幾個平方毫米時,生產成品率可能在大于百分之幾,這樣每個器件的最大額定電流為幾個安培。因此在SIC功率器件取得商業化成功之前需要對SIC的襯底材料作更大技術改進。

image.png

SIC工業生產的晶片和最佳晶片的微管密度的進展

制造不同器件成品率為40% 和90% 的微管密度值

上圖看出,現在SIC材料,光電子器件已滿足要求,已經不受材料質量影響,器件的工業生產成品率,可靠性等性能也符合要求。高頻器件主要包括MOSFET SCHOTTKY二極管內的單極器件。SIC材料的微管缺陷密度基本達到要求,僅對成品率還有一定影響。高壓大功率器件用SIC材料大約還要二年的時間,進一步改善材料缺陷密度。總之不論現在存在什么困難,半導體如何發展, SIC無疑是新世紀一種充滿希望的材料。


主站蜘蛛池模板: 乌审旗| 金溪县| 无为县| 衡阳县| 九龙县| 阿巴嘎旗| 大庆市| 叙永县| 佛教| 广昌县| 房产| 余江县| 登封市| 克东县| 淳化县| 万源市| 左权县| 璧山县| 景洪市| 盖州市| 平陆县| 包头市| 牡丹江市| 蚌埠市| 钦州市| 虞城县| 宁海县| 苏州市| 娱乐| 彰化市| 都兰县| 西林县| 天柱县| 康平县| 龙门县| 文安县| 新巴尔虎左旗| 莱州市| 思南县| 永顺县| 合川市|